

TreeBoston.org | @Trees_Boston | trees@treeboston.org

Urban Heat Island Effect

Grades: 7th - 12th

Standards: 7.LS.2.4 / 8.ESS.3.5 / HS.ESS.2.6

Setting: Indoor

Purpose of Lesson: Students will explore the importance of reducing the Urban Heat Island Effect and understand its connection to climate change.

Essential Questions:

- What is Urban Forestry and Tree Equity?
- What is the Urban Heat Island Effect?
- How does the Urban Heat Island Effect affect climate change?
- How can we reduce the Urban Heat Island Effect?

Materials:

- Google slides
- Temperature gun
- Air quality monitor

Program Session Schedule [~ 65 - 80 minutes]:

Self Introduction & Group Check-ins: 5 mins Discussion of lesson topic: 20 mins Activity: 30 - 45 mins Review & Wrap-Up: 10 mins

Lesson Implementation

Self Introduction & Group Check-ins (5 mins): Take this time to introduce ourselves and our organization, who we are, what we do, and our goal for today's lesson.

Guided Discussion (20 mins):

- ➤ What is urban forestry?
 - "What does an urban forest look like?"
 - Allow students to think about this term and try defining it before providing this definition:
 - A forest or collection of trees that grow in a city and are being taken care of.
- Why is climate change important? What are the trends we have discovered about climate change so far?
 - Climate change frequently leads to more severe and longer heat waves during the summer months.
 - These longer heat waves increase illnesses, death, poverty, deforestation, and energy and electricity usage.

TreeBoston.org | @Trees_Boston | trees@treeboston.org

*Definition of the *Urban Heat Island Effect* = Heat islands are urbanized areas that experience higher temperatures than outlying areas.

- ➤ Fun fact:
 - Daytime temperatures in urban areas are about 1-7 degrees Fahrenheit higher than temperatures in outlying areas, and nighttime temperatures are about 2-5 degrees Fahrenheit higher.
 - Co2 levels in urban areas are 300 to 500 ppm more than their outlying counterparts
- > How do these infrastructures impact our environment and ecosystems?
- > What are some examples of Boston infrastructures?
 - Pavement/Cement, buildings, bridges, trains, airports, tunnels, subway systems, and railroads.

Infrastructure:	Impact on the environment:
Dark Pavement	 Dark pavement is a darker tone of cement that is also known as asphalt <u>Temperature</u>: Dark pavement tends to absorb more sunlight and heat up faster than light-colored pavement. This phenomenon is known as the "urban heat island effect." <u>Energy Consumption</u>: Dark pavement absorbs heat, causing buildings and cars in cities to increase their ACs, which costs more energy and money.
Subway System	 Subway riders and transit workers in major cities are being exposed to levels of air pollution that could increase the risk of heart and lung problems. The continuous subway construction causes a significant demand for construction materials and increased greenhouse gas emissions.
Buildings	 Poorly designed and constructed buildings use more energy, increasing the demand for energy production and contributing to global warming. Land, air, waste, noise pollution, and soil erosion are harmful outcomes for the environment when buildings are constructed.

5. How could we reduce the urban heat island effect?

Strategies:	Outcomes:

TreeBoston.org | @Trees_Boston | trees@treeboston.org

Trees and Vegetation	 Increasing tree and vegetation cover lowers surface and air temperatures by providing shade and cooling through evapotranspiration. The trees and vegetation can also reduce stormwater runoff and protect against erosion.
Green Roofs	 Growing a vegetative layer (plants, shrubs, grasses, and/or trees) on a rooftop reduces roof surface temperatures and the surrounding air and improves stormwater management. Also known as "rooftop gardens" or "eco-roofs," green roofs achieve these benefits by providing shade and removing heat from the air through evapotranspiration.
Cool Pavements	 Cooling pavement is a lighter tone of cement that is also known as concrete Using cooling sidewalks, parking lots, and streets reflects more solar energy and enhances water evaporation. They can also reduce stormwater runoff and improve nighttime visibility.

Indoor Activity Alternative/Lab (30 - 45 mins):

- > Do we see the urban heat island effect in our communities?
- Where do you think are some "hot spots" and cooler areas in our city or our current environment?
- Students will participate in a lab comparing different temperatures and CO2 levels in different locations.
 - One will be with a high canopy coverage and the other with a low canopy.
- They will use <u>Tree Equity Score</u> maps to find the temperature and other demographics and <u>Air Quality Index Map</u> for CO2 emissions.
- After finding results and comparing them, have a discussion as to why they think these specific neighborhoods lack tree coverage and others have equitable tree coverage.
- ➤ "What is Tree Equity?"
 - Tree Equity ensures fair access to the benefits of trees, especially in low-income and minority communities. It addresses disparities in tree distribution within communities.
 - Tree equity: the importance of trees in all neighborhoods

Review & Wrap-Up (10 mins): Bring students back together to share their recordings about their group findings and the trends from the activity. Questions to ask:

- > What trends have you found?
- > How do you think this impacts your community?
- > What was a challenge when conducting this lab?
- > How can you help others in improving your communities' green spaces?

TreeBoston.org | @Trees_Boston | trees@treeboston.org

AVERAGE SURFACE TEMPERATURE / TREE CANOPY PERCENTAGE

TreeBoston.org | @Trees_Boston | trees@treeboston.org

